Pulsed plasma etching for semiconductor manufacturing

نویسنده

  • Demetre J Economou
چکیده

Power-modulated (pulsed) plasmas have demonstrated several advantages compared to continuous wave (CW) plasmas. Specifically, pulsed plasmas can result in a higher etching rate, better uniformity, and less structural, electrical or radiation (e.g. vacuum ultraviolet) damage. Pulsed plasmas can also ameliorate unwanted artefacts in etched micro-features such as notching, bowing, micro-trenching and aspect ratio dependent etching. As such, pulsed plasmas may be indispensable in etching of the next generation of micro-devices with a characteristic feature size in the sub-10 nm regime. This work provides an overview of principles and applications of pulsed plasmas in both electropositive (e.g. argon) and electronegative (e.g. chlorine) gases. The effect of pulsing the plasma source power (source pulsing), the electrode bias power (bias pulsing), or both source and bias power (synchronous pulsing), on the time evolution of species densities, electron energy distribution function and ion energy and angular distributions on the substrate is discussed. The resulting pulsed plasma process output (etching rate, uniformity, damage, etc) is compared, whenever possible, to that of CW plasma, under otherwise the same or similar conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An effective procedure for sensor variable selection and utilization in plasma etching for semiconductor manufacturing

Plasma etching processes have a potentially large number of sensor variables to be utilized, and the number of the sensor variables is growing due to advances in real-time sensors. In addition, the sensor variables from plasma sensors require additional knowledge about plasmas, which becomes a big burden for engineers to utilize them in this filed. Thus an effective procedure for sensor variabl...

متن کامل

Phase Transitions, Curve Evolution, and the Control of Semiconductor Manufacturing Processes - Decision and Control, 1996., Proceedings of the 35th IEEE

This paper presents a strategy for the estimation and control of certain semiconductor manufacturing processes, employing models developed to describe the dynamics of material interfaces in phase transition problems. Previous work has successfully applied similar models to predict surface evolution in etching and deposition. Here, we propose to adapt these techniques to real-time process monito...

متن کامل

How tunneling currents reduce plasma-induced charging

As semiconductor manufacturing moves towards smaller logic devices and thinner gate oxides, there is serious concern that pattern-dependent charging during plasma etching will impede progress by distorting etch profiles and by causing oxide breakdown. Simulations of the final overetch predict that the use of ultrathin oxides (<5 nm), combined with a low substrate potential, will actually elimin...

متن کامل

Combined D-optimal design and generalized regression neural network for modeling of plasma etching rate

Plasma etching process plays a critical role in semiconductor manufacturing. Because physical and chemical mechanisms involved in plasma etching are extremely complicated, models supporting process control are difficult to construct. This paper uses a 35-run D-optimal design to efficiently collect data under well planned conditions for important controllable variables such as power, pressure, e...

متن کامل

Using Neural Networks To Control The Process of Plasma Etching and Deposition

Neural architectures are proposed to model and control plasma etching and deposition processes in semiconductor wafer manufacturing. Static and dynamic neural networks are used to develop plant models and inverse models. A single-hidden layer feedforward neural network model learns to identify the system’s input-output relationship. Another single-hidden layer feedforward neural controller lear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014